Por ejemplo, en la figura 1, el punto A está a 1 unidad hacia la derecha en el eje horizontal (x) y a 4 unidades hacia arriba en el eje vertical (y). Las coordenadas del punto A son, por tanto, 1 y 4, y el punto queda fijado con las expresiones x = 1, y = 4.
Los valores positivos de x están situados a la derecha del eje y, y los negativos a la izquierda; los valores positivos de y están por encima del eje x y los negativos por debajo. Así, el punto Bde la figura 1 tiene por coordenadas x = 5, y = 0. En general, una línea recta se puede representar siempre utilizando una ecuación lineal con dos variables, x e y, de la forma ax + by + c = 0. De la misma manera, se pueden encontrar fórmulas para la circunferencia, la elipse y otras cónicas y curvas regulares.
Ahora tenemos claro que la geometría analítica se desenvuelve en el llamado Plano cartesiano, y si recordamos, como ya dijimos, que Descartes y Fermat observaron la correspondencia entre las ecuaciones algebraicas y las figuras geométricas, podemos colegir que los dos objetivos (o problemas) fundamentales de la geometría analítica son:
1.- Dada la descripción geométrica de un conjunto de puntos o lugar geométrico (una línea o una figura geométrica) en un sistema de coordenadas, obtener la ecuación algebraica que cumplen dichos puntos.
Para este objetivo, siguiendo con el ejemplo anterior, todos los puntos que pertenecen a la línea recta que pasa por A y B cumplen la ecuación lineal x + y = 5; lo que expresado de modo general es ax + by = c.
2.- El segundo objetivo (o tipo de problema) es: dada una expresión algebraica, describir en términos geométricos el lugar geométrico de los puntos que cumplen dicha expresión.
Invirtiendo el ejemplo anterior, dada la ecuación algebraica x + y = 5, podemos calcular todos los valores para x e y que la cumplan y anotados esos valores en el Plano cartesiano veremos que corresponden a la recta AB.
Usando ecuaciones como éstas, es posible resolver algebraicamente esos problemas geométricos de construcción, como la bisección de un ángulo o de una recta dados, encontrar la perpendicular a una recta que pasa por cierto punto, o dibujar una circunferencia que pasa por tres puntos dados que no estén en línea recta.
La geometría analítica ha tenido gran importancia en el desarrollo de las matemáticas pues ha unificado los conceptos de análisis (relaciones numéricas) y geometría (relaciones espaciales).